
Make a web application with
Shiny!
Julin Maloof

Goal

Make and deploy interactive web applications with Shiny.

Shiny allows you to display your R analysis on the web to anyone. For
example:

I used Shiny to write an app to visualize a Markov Chain simulation of genetic
drift.

John used Shiny to develop a GUI for doing Genome Predictions for plant
breeding.

A student from a previous year of BIS180L worked in my lab and made a
visualizer for QTL data and gene expression.

The Shiny website has plenty of additional examples.

·

·

·

·

·

·

2/22

http://shiny.rstudio.com/
http://symposium.plb.ucdavis.edu:3838/MarkovDrift/
http://symposium.plb.ucdavis.edu:3838/QTL-Visualization/
http://shiny.rstudio.com/gallery/

Components of a Shiny App

A ShinyApp consists of two R scripts:

These two scripts must be saved together in a single directory.

ui.R This script controls the user interface (i.e. the design of the webpage, the
input and the output).

server.R This script does the work of performing any analysis, creating graphs,
and creating tables

·

·

3/22

Alternative configuration

Alternatively, ui.R and server.R can be combined into a single script called
app.R.

For this class we will use the two-script method.

The Shiny apps are group projects and having two separate scripts will make it
easier to collaborate in our teams.

4/22

Show scripts

(Go to RStudio and show scripts)

5/22

Sending information between ui.R and

server.R

User input: trait in ui.R can be accessed as input$trait in server.R

ui.R

server.R

radioButtons("trait", #the input variable that the value will go into
 "Choose a trait to display:", #title
 c("Sepal.Length","Sepal.Width",
 "Petal.Length","Petal.Width")) #options

 output$boxPlot <- renderPlot({
 plotTrait <- as.name(input$trait) # convert user input to a name
 pl <- ggplot(data = iris,aes(x=Species,
 y= !! plotTrait,
 fill=Species))
 pl + geom_boxplot()
 })

6/22

Sending information between ui.R and

server.R

output to UI: output$boxPlot in server.R is accessed as boxPlot in ui.R

ui.R

server.R

mainPanel(plotOutput("boxPlot"))

 output$boxPlot <- renderPlot({
 plotTrait <- as.name(input$trait) # convert user input to a name
 pl <- ggplot(data = iris,aes(x=Species,
 y= !! plotTrait,
 fill=Species))
 pl + geom_boxplot()
 })

7/22

Sending information between ui.R and

server.R

Summary:

In the server.R script the objects output and input contain the information
going to and from ui.R

In server.R each item must be accessed as an element of input or output
(e.g. input$trait)

In ui.R the element names are used directly (with quotes).

·

·

·

8/22

IMPORTANT: Force eval in ggplot with !!

ggplot aes() uses something called non-standard evaluation, which makes it
easy to specify columns by name.

colnames(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

iris %>% ggplot(aes(x=Sepal.Length)) + geom_histogram()

9/22

IMPORTANT: Force eval in ggplot with !!

Unfortunately non-standard evaluation makes it difficult to specify the column indirectly.

For example, what if you have the column name specified in a variable?

This is exactly what is going to happen if you allow users to select traits in your Shiny app.

Since input
trait`

input <- list(trait="Sepal.Length")
input$trait

[1] "Sepal.Length"

traitcontains " Sepal. Length " wewouldhopethatRwouldsubstute " Sepal. Length " f or‘input

iris %>% ggplot(aes(x= input$trait)) + geom_histogram()

Error: StatBin requires a continuous x variable: the x variable is discrete.Perhaps you want stat="count"?

10/22

IMPORTANT: Force eval in ggplot with !!

The solution is to use as.name() and !!

as.name() gets rid of the quotes around Sepal.Length and tells R that we want to use this as a name.

!! Tells R to get the value of whatever follows it.

·

·

·

input <- list(trait="Sepal.Length")
plotTrait <- as.name(input$trait) # convert to a name

use !! to substitute Sepal.Length for selected.column
iris %>% ggplot(aes(x= !! plotTrait)) + geom_histogram()

11/22

Keep your script fast

server.R:

Anything within a renderNNN statement will be run every time that the plot
changes.

So load data files and do one-time calculations at the begining of your
server.R script.

·

·

library(shiny)
library(ggplot2)

#load files and do one-time calculations here!

shinyServer(function(input, output) {
 output$boxPlot <- renderPlot({

 # Anything here gets re-run every time user input changes!
...

12/22

Running on your computer

To try the app on your computer, save the above scripts in ui.R and server.R,
respectively, in a directory for this app.

Click on the RunApp Button in R studio

OR from the R console:

·

·

library(shiny)
runApp('PATH_TO_APP_DIRECTORY')

13/22

Sharing

Now that we have our awesome application how do we share it?

Multiple options:

If you are sharing it with someone that uses R and has the shiny library installed,
then you can just send it to them, they can download it, and run it as above.

14/22

Sharing: GitHub

If you have it on GitHub and the person you want to share it with has R they can
use:

library(shiny)
runGitHub(repo = "HamiltonDemos",username = "jnmaloof", subdir = "BinomialDrift")

15/22

Sharing: www.shinyapps.io

You can use Rstudio’s free shiny server Once you have signed up for an account
and authenticated, it is as simple as:

You can see my version here

library(rsconnect)
rsconnect::deployApp('path/to/your/app')

16/22

http://www.shinyapps.io/
https://jnmaloof.shinyapps.io/irisApp/

Sharing: set up your own server

If you are advanced you can run your own server

(I actually set up a server my lab–it isn’t that hard)

17/22

http://www.rstudio.com/products/shiny/shiny-server/

Teams

We will work in our normal breakout room teams. Each team will produce and
deploy a Shiny app that will be collectively graded.

18/22

Assignment

Your team should work together to create and deploy a ShinyApp that plots
some aspect of the data from the BLAST or RICE labs, or from the tomato
measurements data set that you used for the ggplot tutorial, available here. The
app should allow user input that modifies the plot in a useful way.

I have listed some ideas below, but feel free to choose something else

19/22

http://jnmaloof.github.io/BIS180L_web/data/Tomato.csv

RICE data ideas

You might want to limit the user input to 5 or 10 traits in the examples below,
just to save yourself some typing and to keep the radio button list not too
long

Make an interacive version of any of the plots you made for Assignment 4

Interactive plot showing histograms or violin plots or boxplots of user-selected
phenotypic data split by ancestral population assignment or region.

scatter plot of any two traits (user chosen), colored by the values of a third
(user chosen).

If you want to get fancy in either of the above then you could use the selectize
tool to allow the user to select from all of the possible traits.

·

·

You could also allow the user to choose whether it was a histogram or a
violin plot.

You could allow the user to choose the binwidth for the histogram

-

-

·

·

20/22

http://shiny.rstudio.com/gallery/selectize-examples.html

Other data ideas

If any of you have a data set from your lab work you could use that.

You could use the tomato data set that was used in the ggplot tutorial and
explore relationship between altitude and plant height, or plot trait averages
per species letting the user choose the trait, etc. (Link to data in webpage).

·

·

21/22

Scoring (out of 20 points)

16 points for a functional, interactive web app deployed on shinyapps.io and
pushed to GitHub.

+ 2 points for using two or more input types (like a slide and a radio button).
+ 2 points for good annotation on the web page (a new user would understand
what the app is about).
- 2 points for each student that does not make at least 2 commits to the team
repository.

22/22

